
GUARDAIN: Protecting Emerging Generative AI Workloads on Heterogeneous NPU

Aritra Dhar1† Clément Thorens2†∗ Lara Magdalena Lazier1 Lukas Cavigelli1

1Computing System Labs, Huawei Zurich Research Center 2ETH Zurich
{aritra.dhar, lara.magdalena.lazier2, lukas.cavigelli}@huawei.com clement.thorens@inf.ethz.ch

Abstract—Driven by recent advances in large language models
(LLMs), generative AI applications have become the domi-
nant workload for the modern cloud. Specialized hardware
accelerators, such as GPUs, NPUs, and TPUs, play a key
role in AI adoption due to their superior performance over
general-purpose CPUs. AI models and the data are often highly
sensitive and come from mutually distrusting parties. Exist-
ing industry-standard CPU-based TEEs, such as Intel SGX
or AMD SEV, do not adequately protect these accelerators.
Device-TEEs like Nvidia-CC only address tightly coupled CPU-
GPU systems with a proprietary solution requiring TEE on the
host CPU side. On the other hand, existing academic proposals
target specic CPU-TEE platforms.

To address this gap, we propose GUARDAIN, a condential
computing architecture for discrete NPU devices that requires
no trust in the host system. GUARDAIN secures data, model
parameters, and operator binaries through authenticated en-
cryption. GUARDAIN uses delegation-based memory semantics
to ensure isolation from the host software stack, while task
attestation guarantees strong model integrity. Our GUARDAIN
implementation and evaluation with state-of-the-art LLMs
such as Llama2 and Llama3 shows that GUARDAIN introduces
minimal overhead with no changes in the AI software stack.

1. Introduction

Generative AI (GenAI) has gained momentum, with
large language models (LLMs) being used in applications,
such as chatbots [1], image and video generation [2], [3],
and code completion [4]. Major cloud providers offer AI-
centric services [5], [6], [7], [8], that typically utilize spe-
cialized accelerators such as GPUs, NPUs, and TPUs.
Security concerns. GenAI brings numerous security chal-
lenges in cloud environments. The massive data and compu-
tational resources for training LLMs make them exceedingly
expensive [9] and model providers’ prime intellectual prop-
erties. Additionally, users’ queries to LLMs often contain
sensitive information such as health data, personal informa-
tion, or business secrets [10]. In a typical cloud deployment
setting, there are three mutually distrusting parties: (1) the
model provider who develops and owns the AI model, (2)
the data provider who delivers their data to the model for

†Joint first authors.
*Work done while the author was at Huawei Zurich Research Center.

processing, and (3) the cloud provider who owns the com-
puting infrastructure where the model runs. In this context,
the model and data need protection from the cloud provider
and the corresponding software stack.
Gap in prior work. Existing CPU-based trusted execution
environments (TEE) [11], [12], [13], [14] isolates secure
applications or enclaves from a malicious privileged soft-
ware stack, such as the OS or the hypervisor. In addition,
memory encryption protects untrusted DRAM and the sys-
tem bus. Besides CPUs, various works have proposed TEEs
on devices such as GPUs [15], [16], [17], IPUs [18] or
FPGAs [19], [20], [21]. Some [22], [23], [24], [25], [26]
also extend CPU-TEE’s security primitives to accelerators.
However, with a few exceptions [18], [20], existing pro-
posals require a CPU-TEE, which increases the Trusted
Computing Base (TCB). Besides increasing TCB, CPU-
TEE security guarantees can be undermined by side-channel
attacks [27], [28], [29], [30], [31]. Additionally, solutions
requiring a confidential VM (C-VM), such as CCA and SEV,
further increase the TCB by trusting the C-VM OS. Several
proposals focus solely on integrated GPUs [23], [25], [26] or
NPUs [24], [32], a more straightforward setting that does not
consider PCIe communication or separate memory spaces
from the CPU. Placing a part of the driver inside a high-
privilege trusted security monitor [24], [25], [33] offloads
critical security decisions such as memory allocation for
tasks and binaries, memory sharing, and access control to a
trusted entity. Such designs expand the TCB and do not fit
well in a scenario where the host is fully malicious. While
a proposal on Graphcore IPU [18] supports a TEE-less
host, it lacks a modern AI software stack with interactive
sessions and necessitates extensive hardware modifications.
Finally, almost all the existing TEE proposals consider older
CNN-based AI models or evaluate using operators such as
matrix multiplication or SVD, which have a small memory
footprint. Therefore, these solutions do not scale to prac-
tical LLMs with large memory footprints and low latency
response requirements.
Our contribution. We design GUARDAIN, a confidential
computing solution for discrete NPUs without relying on a
CPU-TEE. The TCB of GUARDAIN consists solely of the
NPU itself, while the entire host is untrusted. The hardware
root of trust (HW-RoT) in the NPU facilitates attestation and
key derivation to establish separate secure channels between
the model and the data provider. Measured boot ensures the

NPU boots with the correct firmware signed by the hard-
ware manufacturer. GUARDAIN accepts fully encrypted data
and models from the (mutually-distrusting) data and model
provider. During inference, the NPU removes all the DMA
mapping from the host’s virtual address space (by remov-
ing SMMU entries) to prevent malicious DMA operations
from accessing the model, data, and workspace (operator
execution space). Data and model decryption begin once
the memory has been unmapped. The results are encrypted
before the host maps back the corresponding memory. The
NPU runtime creates tasks from the AI model that speci-
fies the order of operator execution (e.g., ReLU → matrix
multiplication → SoftMax) and memory operation (such as
DMA copy from host to device). The malicious host can
inject tasks (e.g., performing a DMA copy) into the model
to compromise the confidentiality of the data and model.
GUARDAIN attests to the integrity of the model computation
before the execution begins. It provides isolation and end-
to-end encryption without introducing changes to the AI
software stack, such as PyTorch. Therefore, GUARDAIN
enables AI programmers to support confidential computing
without modifying existing codebases.

We prototype GUARDAIN on a Huawei Ascend 910A,
a state-of-the-art NPU, by modifying its firmware. We
demonstrate GUARDAIN on training and inference work-
loads and evaluate it with state-of-the-art transformer-
based LLMs such as GPT-neo-125M, Llama-2-7B (Base
and Chat), Llama-3-8B (Base and Instruct), Llama-2-
13B-instruct, Llama3-ChatQA-1.5-8B, and CodeLlama-7B-
Instruct, for chat, sentence, and code completion. Our eval-
uation shows that GUARDAIN introduces minimal perfor-
mance loss during the inference pass (0.91% in GPT-neo-
125M and 0.028% in Llama3-Chat-QA-1.5-8B model, both
with 2K input sequence size) and one-time set-up. Simi-
larly, GUARDAIN introduces minimal overhead in training:
3.39×10−4% in ResNet152 (CNN) with batch size 256 and
0.16% in NanoGPT-162M (LLM). Although our proposal
focuses on a specific NPU implementation, our design phi-
losophy extends to other AI accelerators, such as GPUs and
TPUs, that exhibit task-based model execution.

In summary, we make the following contributions:

(1) Identify design principles for NPU-based conden-
tial computing. We identify security properties to protect
data and models from untrusted host and cloud. Specifically,
we design building blocks for confidential computing on
an NPU that prevent a privileged host from accessing data
and models on the NPU and change their memory mapping
during inference and training.
(2) System design. Building on these design principles,
we develop GUARDAIN for discrete NPUs and analyze its
security against malicious hosts and cloud providers.
(3) End-to-end evaluation. We implement a GUARDAIN
prototype based on Huawei 910A NPU, evaluate it with
state-of-the-art LLMs, and show that GUARDAIN intro-
duces minimal overhead in both inference and training with
an unmodified AI software stack.

Figure 1. An Ascend 910A SoC’s high-level architecture and the shared
virtual memory with a 64-bit host CPU.

2. Background: AI Accelerators

AI-accelerators and Task-based Execution. State-of-the-
art high-performance AI accelerators (e.g., NVIDIA [15],
[34], GroqChip [35], and Huawei discrete NPUs [36]) have
converged on similar heterogeneous system designs. These
devices are attached to a host via a bus (for example, PCIe),
feature multiple computing units for different operations,
and include high-bandwidth memory (HBM). The device
drivers handle memory management and communication
with the device. Besides the hardware architecture, the
software stacks have converged, with the task-based mode
being established as the de facto standard for AI applica-
tions. It breaks a large computation into a series of tasks
(commonly referred to as kernels or operators) arranged in
a dependency graph. Given a high-level representation of
the computation (model), the accelerator’s runtime builds
and optimizes the graph. It divides the graph into different
independent streams, which list interdependent tasks. Each
stream has at least one submission queue, allowing a high
level of parallelism, as the device can schedule tasks on
different queues concurrently. In practice, there are two ways
tasks are sent to the device: either one after the other as they
become executable (eager mode) or all at once (dynamo
or graph mode).

While the low-level implementation and design vary
between vendors, the computation paradigm and software
architectures described above are not unique to a single
vendor. Therefore, while we build our prototype on the
Huawei Ascend 910A NPU, the design of GUARDAIN
can be ported to any accelerator relying on a task-based
execution model. The following section will give further
details about our specific architecture.
Ascend 910A. Huawei Ascend 910 NPU SoC is a state-
of-the-art AI SoC for training and inference acceleration on
large data centers and clouds. All the components of the
SoC are connected via an internal bus, as shown in Fig. 1.
The SoC has two types of computation cores that execute
AI tasks. Four AI CPU cores are general-purpose Huawei
Taishan (ARM A73 profile) with hardware cryptographic
extensions. Thirty-two AI Cores are based on the Huawei
DaVinci [37] architecture optimized for executing neural
network operations. The control CPU is a Taishan core that
runs the NPU firmware and manages the PCIe interface.

The control CPU boots and attests to a minimal Linux
kernel using measured boot and initializes all the hardware
components. The task scheduler (TS) combines a dedicated
hardware component with firmware running on a Taishan
core. It distributes the tasks to the AI CPUs and AI Cores.

The NPU runtime sits between the higher-level AI
software stack (PyTorch/TensorFlow) and the NPU driver.
The NPU driver contains a set of Linux kernel mod-
ules, and it manages communication over DMA, issues
MMIO commands to send instructions, and monitors NPU
health. Ascend PyTorch adapter [38] provides the neces-
sary interface to bridge high-level AI-specific APIs to low-
level NPU driver calls. A task contains operator meta-
data such as the location of the operator binary on the
NPU memory (PC_START), location of the data argu-
ments, and workspace to store intermediate variables. Using
loadModel API, the runtime sends the tasks to the task
buffer, a reserved NPU memory location. After sending
all tasks, the runtime sends an executeModel command
for graph mode, or compileAndExecute for eager
mode. Upon reception of the command, the TS sequentially
reads the task buffer, selects the first task, and submits it to
the corresponding AI CPU or AI Core. After executing a
task, the scheduler moves the task entry to the completion
queue (CQ) and continues till the task buffer is empty. The
NPU runtime reads the CQ to track the progress of the
current execution.

3. Motivation, Setting and Attacker Model

Motivation: Gap in the Prior Work. Large ML/AI work-
loads involving sensitive and proprietary data require secur-
ing data and computation in the cloud [39], [43]. Notably,
the rise of LLMs necessitates confidential computing set-
tings with three parties: data, model provider, and cloud
provider. Neither the model nor the data can be leaked to
other parties. We call this setting multi-residence TEE as the
AI workloads running on the TEE access code (i.e., model)
and data from different mutually distrusting parties. This
is a clear deviation from the traditional cloud-TEE model
involving two parties: the enclave user and the untrusted
cloud.

Prior works port the confidential computing paradigm to
ML-specific accelerators (e.g., NPU [24], GPU [15], [16],
[17]). As we show in Table 1, most existing proposals extend
security guarantees of CPU-based TEE solutions, such as
Intel-SGX [16], [17], AMD-SEV [41], TrustZone [25], [26]
or ARM CCA [22], [23], from the host to the device. They
have the advantage of including a trusted component on the
host to ensure secure communication with the trusted device.

CPU-based TEE significantly enlarges the TCB, requir-
ing trust in the accelerator, the CPU, and respective mon-
itors. Confidential VMs (TDX, CCA) also require trust in
the guest OS and driver. Moreover, it reduces compatibility,
as the solution relies on a specific CPU on the host, and
existing attacks [27], [28], [29] may undermine the CPU-
TEEs’ security guarantees.

To the best of our knowledge, only two previous works
assume untrusted hosts and use the device as the sole
hardware root-of-trust: SheF [20] and Graphcore IPU [18].
SheF uses an FPGA as the trusted device, ensuring integrity
and confidentiality through authenticated and encrypted bit-
streams, along with device isolation. Graphcore relies on
a specialized compiler to convert the model into an en-
crypted and authenticated binary in a clean room environ-
ment, which can be sent directly to the device without
host intervention. It requires significant hardware changes
and prevents interactive AI software stacks. Therefore, these
systems are impractical for real-world, large-scale models.

Our proposal solely relies on the NPU as the root of trust,
does not require a CPU-TEE or hardware changes, works
with current AI frameworks, extends to other task-based AI
accelerators, and is optimized to run modern LLMs.

A case against spatial sharing. The increasing scale of
LLMs influences resource-sharing and utilization strategies.
Earlier ML-specific TEEs focused on spatial sharing (or
multi-tenancy) based on complex techniques (multiple page
tables, monitors, dedicated hardware support) to facilitate
resource and performance isolation and boost utilization.
We observe this trend in commercial confidential computing
solutions such as Nvidia-CC on H100 and B100 (using
MIG [44]), as well as several academic proposals [16],
[22], [23], [24], [25]. Multi-tenancy is often a choice for
workloads with low memory utilization, such as older CNNs
(ResNet, VGG, AlexNet, and MobileNet) or isolated oper-
ations like matrix multiplication or SVD. However, such
workloads do not represent modern AI workloads like
LLMs. Table 2 shows the high memory utilization of state-
of-the-art LLMs on different GPUs [45] and Huawei Ascend
910A NPU. We observe that most commercially available
accelerators have memory ranging from 32 GB to 90 GB,
sufficient to run models with 7 to 70 billion parameters
(c.f. Table 2). We further observe that a single Ascend 910A
NPU has insufficient memory to execute a 13B parameter
model with a >2K input sequence length or to load a 70B
parameter model. Internal data structures, such as the KV
cache, grow quadratically with the input sequence length.
LLM applications such as chat-bots [1], code generation [4],
or search [46], [47] are latency-sensitive. Lower compute
resources due to spatial sharing between multiple tenants
result in a higher latency response (e.g., the effective mem-
ory bandwidth reduction is proportional to the number of
MIG slices [44]). Additionally, supporting a single tenant
reduces the hardware and software complexity, as it does
not require mechanisms to split NPU resources between
tenants. Moreover, single tenancy eliminates the requirement
of a TEE (such as a c-VM in case of Nvidia-MIG) as it
does not require isolation of tenants within the accelerator.
Such a design is also well-suited for our attacker model,
where we assume the host is fully attacker-controlled. Given
these tradeoffs, we design GUARDAIN to be a single-tenant
solution. Not supporting multi-tenancy is a limitation of
GUARDAIN. We discuss more challenges of supporting
multi-tenancy in Sec. 6.

TABLE 1. COMPARISON WITH EXISTING CONFIDENTIAL COMPUTING MECHANISMS ON SPECIALIZED ACCELERATORS AND THEIR SECURITY.
: TRUSTED DRIVER : PARTIALLY TRUSTED DRIVER : UNTRUSTED DRIVER ✓: SUPPORTED ✗: NOT SUPPORTED ?: UNKNOWN
C-VM: CONFIDENTIAL VM SM: SECURITY MONITOR HROT: HARDWARE ROOT-OF-TRUST SB: SECURE BOOT RA: REMOTE ATTESTATION LA: LOCAL ATTESTATION
STA: SINGLE TASK ATTESTATION TA: TASK ATTESTATION SC: SECURITY CONTROLLER PT: PYTORCH TF: TENSORFLOW −: NO CHANGES

CC capability and trust assumption Device AI/ML programming capability Required changes

Existing systems Host TCB Isolation
granularity

Spatial
sharing

Multi-residence
TEE

Attestation
(CPU/host excl.) Type Interface Native programming

interface AI stack HW SW

Graviton [16] Intel SGX +  GPU
contexts ✓ ✗ HRoT,RA,STA GPU PCIe CUDA ? SC Runtime, drivers, CUDA

HIX [17] Intel SGX +  Enclaves ✓ ✗ LA GPU PCIe CUDA ? SGX instruction,
MMU, PCIe

GPU enclave, inter-enclave
communication, CUDA

GraphcoreIPU [18]  Device ✗ ✓ HRoT,SB,RA IPU PCIe Proprietary TF CCU XLA, poplar compiler,
runtime

NvidiaCC (H100) [15] C-VM +  VM ✓ ✗ HRoT,SB,RA GPU PCIe CUDA TF/PT Security
processor CUDA, C-VM

Apple PCC [39] Enclave + PCC-OS
+ TXM [40] +  Node ? ? HRoT,SB,RA NPU Internal Swift Proprietary

support
Custom Apple

Silicon SepOS, SW stack

sNPU [24] Penglai Enclave
+  + SM Worlds ✓ ✗ HRoT,SB NPU Internal Proprietary ? SoC-NoC, SC SMMU, SM

StrongBox [25] TrustZone
+  + SM Worlds ✗ ✗ SB GPU Internal OpenCL ? - Runtime, driver,

MMIO, TASK protector

Honeycomb [41] AMD-SEV + 
+ Validator + SM

SVSM
+ SM ✓ ✗ SB,RA(of SM) GPU PCIe HIP ? - Validator, SVSM,

SM, runtime

CAGE [23] ARM CCA
+  + SM Realm ✓ ✗ RA GPU Internal OpenCL ? - API, monitors, ShadowTask

ACAI [22] ARM CCA
+  + PCIe port Realm ✗ ✗ SB,RA GPU +

FPGA PCIe CUDA ? - TF-A, SMMU, RMM

GR-T [26] Trustzone
+  + cloudVM

VM
+ Worlds ✓ ✗ SB,RA GPU Internal GlobalPlatform API ? - Driver Shim, GPU shim

HETEE [42]  + SM Node ✗ ✗ SB,RA GPU PCIe CUDA TF/PT HETEE box, PCIe
interconnect, (SC) SC, API

ShEF [20]  Device ✗ ✗ HRoT,SB,RA FPGA PCIe ✗ ✗ - ShEF runtime,
Shield

GUARDAIN  Device ✗ ✓ HRoT,SB,RA,TA NPU PCIe CANN PT/TF - Driver, runtime,
kernels (operators)

TABLE 2. MEMORY UTILIZATION (%) OF LLMS ON DIFFERENT GPUS
AND ASCEND 910A NPU WITH #BATCH=1 AND #CONTEXT=512. THE

COLOR GREEN DENOTES THAT THE MODEL WITH A SPECIFIC
QUANTIZATION FITS ON THE ACCELERATOR MEMORY, WHERE COLOR

RED DENOTES THE MODEL DOES NOT FIT.

Models AI Accelerators

Variant Precision
size (GB)

16GB
(V100)

24GB
(A5000)

32GB
(910A/V100/RTX5090)

80GB
(A100)

94GB
(H100 NVL)

int8 8.7 0.5 0.4 0.3 0.1 0.1llama3-8b fp16 17.4 1.1 0.7 0.5 0.2 0.2

int8 14.1 0.9 0.6 0.4 0.2 0.1llama2-13b fp16 28.2 1.8 1.2 0.9 0.4 0.3

int8 15.3 1.0 0.6 0.5 0.2 0.2qwen2-14b fp16 30.6 1.9 1.3 1.0 0.4 0.3

int8 33.7 2.1 1.4 1.1 0.4 0.4qwen2-32b fp16 67.4 4.2 2.8 2.1 0.8 0.7

int8 73.4 4.6 3.1 2.3 0.9 0.8llama3-70b fp16 146.9 9.2 6.1 4.6 1.8 1.6

Setting, trust assumption, and attacker model. In a
typical trusted execution scenario, the software stack and
the cloud provider are untrusted. In addition, our setting
involves two types of TEE users: the model and the data
provider. The model and data provider are mutually dis-
trusting, and neither trusts the cloud provider:

(1) Cloud/infrastructure provider: The cloud service
provider (CSP) is responsible for provisioning and main-
taining all hardware and software resources for operation.
The CSP controls all nodes (CPU, NPUs), manages all the
infrastructure, including network interfaces, switches, etc.,
and maintains all the software, such as the OS, hypervisor,
device drivers, firmware, and the AI/ML software stack
like PyTorch or TensorFlow. We assume all hardware and
software the cloud provider provides are untrusted except
the specific NPUs where the AI model execution occurs.

(2) Model provider: The model provider develops and
trains the model from the ground up (known as the foun-
dation model) and keeps the model’s composition and
parameters secret. The model provider may also re-train
or fine-tune an open-source model with proprietary data to
suit new application scenarios (e.g., code generation). Fine-
tuning or retraining with secret datasets makes it crucial to
keep the model parameters confidential. The CSP is a model
provider in the machine learning as a service scenario.
(3) Data owner: The data owner executes models on cloud
infrastructure (CPU, memory, NPU) for training or infer-
ence. The models may either be the intellectual property
of a model provider or provided by the data owner. We
assume that the data and the model provider are mutually
distrusting parties.

We only assume NPUs where the deployed AI/ML
workloads are trusted. The NPUs have an on-chip hardware
security module (HSM) that acts as the hardware root of
trust. Lastly, we assume that denial of service (DoS) and
side-channel attacks are outside the scope of this paper.

4. Security Challenges and Requirements

We use the matrix multiplication depicted in Fig. 2 as
a running example. The NPU runtime copies the NPU-
optimized binary containing a matrix multiplication operator
(torch.mm), as well as the tensors M1 and M2 onto the
NPU’s memory. After executing the operator, the NPU
copies the matrix M3 from its memory to the CPU’s main
memory. The three tasks corresponding to this example
are represented in Fig. 3, namely, a memory copy of the
tensors (M1, M2) from the host to the NPU, the matrix
multiplication and memory copy of the resulting tensor (M3)

 
def mm_npu_operator (m , n) : #operator definition

M1 = torch .rand (m ,n) .npu () #copy M1 to NPU
M2 = torch .rand (m ,n) .npu () #copy M2 to NPU
M3 = torch .mm (M1 ,M2) .cpu () #copy result M3 to CPU 

Figure 2. An example PyTorch matrix multiplication code.

Figure 3. Matrix multiplication task and memory layout on a NPU, corre-
sponding to the code snippet in Fig. 2.

from the NPU to the host memory. The host-side NPU
runtime reserves memory spaces on the NPU HBM for the
binary of the matrix multiplication operator, tensors (M1,
M2, M3), and the workspace (operator’s working space, e.g.,
heap and stack). Based on this execution model, we observe
several security challenges assuming a malicious host. We
list security challenges and their corresponding requirements
for enabling confidential computing on NPUs.

Security Challenge 1: The untrusted host runs the
privileged softwares (e.g. OS, hypervisor, and device
driver) along with an AI software stack. At any point,
the untrusted host has full access to the data and model.

→ Requirement 1: End-to-End Authenticated Encryption:
To ensure the attacker-controlled host cannot observe or
manipulate the data and model, all inputs, outputs, model
parameters, and binaries must be end-to-end encrypted and
authenticated. Therefore, the host only handles encrypted
data, models, and results at all times.

Security Challenge 2: The NPU requires the plaintext
model (and data) for execution. When the NPU receives
the encrypted model and data, it must first decrypt them.
Once the decryption is complete, nothing prevents the
host (with full memory access) from reading or mod-
ifying them. Thus, we need to ensure the host loses
access before the decryption begins. Likewise, end-to-
end authenticated encryption is insufficient for the result,
as the host can access it before it is encrypted.

→ Requirement 2: Atomic execution invariant: Before the
NPU starts decrypting the data and model, as required prior
to execution, the host must lose access to them. This can
be achieved by removing the DMA mappings of the NPU
memory region where the data and model reside.

Security Challenge 3: The host defines the memory
mapping for the model’s inputs and outputs. If a mali-
cious host declares the output memory region to coincide
with the memory region where the model is stored,
the data provider gains access to information about the
model, compromising its confidentiality.

→ Requirement 3: Memory invariant: The NPU must reject
memory allocations or remapping requests from the host to
any memory location that has already been allocated (e.g.,
model, data, or intermediate results).

Security Challenge 4: Even without direct access to the
data or model, the untrusted host can issue malicious
commands to the NPU, such as copying part of the
model parameters into the results accessible by the data
provider, compromising the model’s confidentiality.

→ Requirement 4: Model attestation: A lack of integrity
in the model execution compromises the model and data
security. In particular, one needs to ensure that the host does
not change or add any commands or operators.

Security Challenge 5: The security primitives for confi-
dential computing are only valid if there is a mechanism
to attest the NPU firmware. Without a systematic way
to check the integrity of the NPU firmware, we cannot
assert the trustworthiness of the NPU’s confidential com-
puting capability.

→ Requirement 5: NPU attestation: We need a measured
boot-equivalent primitive for the NPU, where the NPU only
accepts manufacturer-certified firmware and does not allow
an attacker-controlled host to flush its firmware or change
the runtime configuration.

Security Challenge 6: The NPU and its software stack
provide several debugging methods for correctness and
performance, such as inspecting the NPU memory or
monitoring execution time. These mechanisms allow the
attacker to extract information about models and data.

→ Requirement 6: Restricted debugging: To ensure data
and model confidentiality, all debugging-related operations
must be restricted.

5. Basic Building Blocks for Condential AI

5.1. Model and Data Encryption

The model and its associated data must be encrypted
with the keys shared between the NPU, the model provider,
and the data provider to protect them from an untrusted
cloud (Req. 1). The model and data provider are mutually
distrusting; they cannot access each other’s shared key.
Setup. The model and data providers initiate an authenti-
cated Diffie-Hellman key exchange with the NPU. If the
model and data provider are the same party, only one key
is derived to encrypt the data and model. The NPU derives

Figure 4. Parallel AES-GCM on the model and data to hide the operator
latency running on the AI-CPU cores. The AI core executes the AI-related
operators, e.g., matrix multiplication.

ephemeral keys from its root key stored in the hardware
RoT, along with the firmware measurement derived in the
measured boot (refer to Sec. 5.4). The firmware measure-
ment ensures that the model and data provider interact with
a legitimate NPU device running the correct firmware image
signed by the hardware vendor.

5.1.1. AI CPU-based custom operator. We use the ARM
AES intrinsic and the SIMD (NEON) instructions of NPU
AI-CPU cores (refer to Sec. 2) to accelerate AES-GCM
operations. AES-GCM is implemented as an AI CPU op-
erator executed before (for data and model decryption) and
after (for result encryption) the model execution. The AES-
GCM operator is part of the NPU firmware, verified by
the measured boot during the NPU initialization, and part
of the software TCB. Integrating the AES-GCM operator
within the NPU firmware ensures that all models utilize the
verified encryption implementation, thereby eliminating the
need for specialized encryption hardware or modifications to
the AI software stack. All the cryptographic operations are
performed in-place and do not require additional memory
on the NPU.

The parallelized AES-GCM operator verifies and de-
crypts multiple batches of data on multiple AI CPU cores
to hide the AES-GCM latency. Fig. 4 shows parallel AES-
GCM operations on the model, data, and results running on
the AI CPUs, while the AI Cores execute the model layer
operators during inference passes. Typically, for an LLM,
the computation is bound by the computation layer (a few
milliseconds) compared to the AES-GCM operations on the
data (in the order of 100 µ seconds). Therefore, the latency
is only visible for the first inference, when the model and
the first data batch must be decrypted. The decrypted model
is already on the NPU for subsequent inference passes.

5.1.2. Executing the modied model. Execution of the
modified model takes place in two steps: preparing the
model by instrumenting the AI CPU operators, and the
actual inference pass of the instrumented model on the NPU.
Preparing the model. The compiled model file (or frozen
model for inference) contains the layer information, param-
eters, and operator binaries. The model provider encrypts
the weights (a list of Tensor) and the individual operator
binaries with the secret key shared between the model
provider and the NPU. Each binary contains a header, a
symbol table, and compiled instructions for the NPU AI

core. A list of binary sizes helps the NPU runtime to parse
the model file. We modify the binary sizes to account for
the 16 bytes of the message authentication code (MAC), as
well as the encryption padding.

The model file contains the layer information cor-
responding to the tasks. For example, the layer named
te_relu_1_1 denotes the first ReLU activation function.
A task name typically corresponds to an actual operation,
but this is not necessary for the model to function correctly,
and the model provider can replace the task names with
randomized strings to prevent the underlying operator from
being exposed. Note that in our design, the structure of the
model will be visible to the attacker. This limitation is due
to the architecture of the AI runtime, which depends on the
model layout to create the computation graph. When the un-
trusted host receives the encrypted model and data, it copies
them to the NPU via the AI software stack (e.g., PyTorch).
Following this copy, the host invokes the executeModel
API to initiate the inference.
Model execution on the NPU. The executeModel API
call from the NPU runtime signals the NPU task scheduler
(TS) to start executing the AI model tasks. The NPU TS
ensures that the model and data decryption starts right after
the call to the executeModel API. After one inference
pass, i.e., a forward pass throughout all the layers in the
model, the model outputs a vector known as the logits.
A normalization operation (e.g. softmax) on the logits
produces the probability values of the inference classes. The
AES-GCM operator encrypts the logits before copying them
back to the host.

5.2. Enforcing Memory Lock Invariants

Decrypting the data and model (refer to Sec. 5.1) right
after the executeModel call from the untrusted host
grants it full access to the sensitive, decrypted content.
Therefore, we must revoke the host’s access to these NPU
memory regions. Requirements Req. 2 and Req. 3 fo-
cus on guaranteeing critical memory invariants to ensure
the data, model, and execution remain isolated from the
attacker-controlled host. We design a memory access control
primitive using the NPU’s SMMU (similar to the ARM’s
SMMU [48]). All PCIe transfers between the host and the
NPU go through the NPU’s SMMU. We enforce access
control by modifying the NPU memory manager, located
on the control CPU, and with exclusive access to the NPU’s
SMMU. We need to solve four challenges to ensure secure
access control.
[C1] We must ensure the following sequence of events:
loading the model into NPU memory → locking the NPU
memory region where the model resides → decrypting the
model atomically to prevent the host from interrupting the
NPU and changing the sequence of events.
[C2] Following the decryption of the model and data, their
virtual memory spaces can only be unlocked by either re-
encrypting or resetting the memory content.

[C3] The host cannot map the output of the model to the
same memory address space as the input and leak the model
parameters and binaries once the output is unlocked.
[C4] The host cannot remap the IO memory regions on the
NPU to trigger the remapping of the DMA pages on the
host after the decryption of the model and data is complete.

For [C1], we ensure that the AES-GCM AI-CPU op-
erator responsible for decrypting the model and data is
scheduled only after the NPU memory manager unmaps the
model, data, and workspace memory. Unmapping the mem-
ory using the dma_unmap_pages API call removes all the
memory mapping from the NPU’s SMMU and blocks any
memory access from the host. At this point, any interrupts
coming from the host prevent the NPU memory manager
from sending an acknowledgment signal to the NPU TS.
Under normal circumstances, after receiving the signal, the
NPU TS schedules the AES-GCM operator to decrypt and
verify the model weights, binaries, and data.

To address [C2], the NPU TS schedules an AES-
GCM encryption operator on the outgoing memory location
(model output) after the model’s execution. Upon complet-
ing the encryption, the operator signals the NPU driver
to remap the memory using dma_remap(location,
size). The remap API adds an entry to the SMMU,
allowing the host to copy the encrypted results.

We address [C3] by introducing a memory exclusiv-
ity invariant within the NPU memory manager. The NPU
memory manager contains a data structure that tracks all
the allocated memory locations based on their DMA di-
rection (DMA_BIDIRECTIONAL, DMA_TO_DEVICE, or
DMA_FROM_DEVICE). By tracking the memory addresses
and their corresponding DMA directions, the NPU memory
manager prevents the host from declaring an output tensor
that points to an already allocated address, i.e., remapping
the model address space to the output.

To address [C4], we ensure that all the critical func-
tions, dma_map, dma_unmap, and dma_remap, which
can manipulate the NPU’s SMMU entries, are only callable
from the NPU TS. The host communicates with the NPU
TS through the model tasks submitted on the task queue.
Only the executeModel task can trigger the unmapping
and subsequent decryption operations. The end of model
execution triggers the result encryption and its remapping to
the host. This design ensures that the host cannot arbitrarily
remap the NPU memory to itself.

5.3. Model and Task Attestation

Requirement Req. 4 implies that the integrity of the
model execution is critical to protect the integrity and con-
fidentiality of both the model and data. The untrusted NPU
driver sends the model (containing layer information, model
parameters, and operator binaries) to the NPU memory and
writes the tasks on the task queue. The task’s PC_START
attribute points to the operator binary’s memory location.
As the NPU driver runs on the attacker-controlled host, the
host can always push arbitrary tasks and remove or reorder

tasks to compromise the integrity of the AI model. The
attacker can also modify the tasks’ PC_START attribute
to point to a different binary and thus execute a different
operator, compromising the integrity of the model execution.
We design a model verification method shown in Fig. 5 to
prevent such an attack. We assume two keys KM and KD,
shared respectively between the model provider & the NPU,
and the data provider & the NPU. We use the matrix multi-
plication example depicted in Fig. 2, and Fig. 3 to describe
our mechanism. Here, the model consists of three layers that
execute three operators: a memory copy from host to device
(DMA_TO_DEVICE), a matrix multiplication, and another
memory copy from device to host (DMA_FROM_DEVICE).
The sequence of the corresponding operators’ binaries is
B1 → B2 → B3. Fig. 5 depicts the flow of our model
and task attestation mechanism. Additionally, a sequence
diagram of the same protocol is provided in Fig. 6. The
steps are the following:

① An AI model (M) consists of layer information
(L), model parameters (W), and operator binaries (B =
{B1, B2, B3}). The model provider encrypts and creates
message authentication codes (MAC) of W , and of each
operator binaries in B such as Bi ← MACKM

(Bi),
and generates the MAC of the concatenated sequence
of binary MACs corresponding to the layers, such as
M ← EncKM

(M) and B ← MACKM
(B1∥B2∥B3). L

contains the name of the layer (that the model provider
can masquerade) and the location of the encrypted binary
relative to a fixed starting point in the M . This information
enables the NPU runtime to generate the corresponding
layer tasks. The model provider sends M and B to the
untrusted host (on the CSP) and B to the data provider.

② Using loadModel API, the host deploys the model
to the NPU. The runtime determines PC, the start-
ing addresses of the operator binaries (B1, B2, B3) to
map them on the NPU memory. In our example,
PC={0x10,0x20,0x30}.
③ The NPU driver copies the model (L,W,B1, B2, B3

in Fig. 5) to the NPU’s HBM over DMA. W and
{B1, B2, B3} are encrypted with KM . The NPU runtime
creates a sequence of tasks: T1, T2, T3 from the layer infor-
mation and uses PC to populate the PC_START attribute.

④ The untrusted host sends the PC to the data provider.

⑤ The data provider generates P1 ← MACKD
(PC) and

P2 ← MACKD
(B) ,and sends P1 and P2 to the host.

⑥ The driver invokes the executeModel API by writ-
ing a specific execution task (E in Fig. 5) on the task
queue. P1 is sent together with executeModel. This
triggers the task scheduler (TS) to remove all the memory
mappings from the NPU’s SMMU. Therefore, the host can
no longer read from or write to either the HBM or the task
queue.

Figure 5. Protocol to ensure the integrity and the confidentiality of the AI model, as well as the integrity of model execution.

Figure 6. Sequence diagram of GUARDAIN model and task attestation
(Fig. 5) to ensure the integrity and the confidentiality of the AI model, as
well as the integrity of the model execution.

⑦ The NPU TS collects all the PC_START at-
tributes from the task queue. The TS calculates P ′

1 ←
MACKD

(PC_START) and aborts if P1 ̸= P ′
1.

⑧ If step ⑦ is successful, the TS invokes an AES-GCM
AI CPU operator (c.f., Sec. 5.1) to verify the integrity of
the sequence of binaries using their MACs (Bi’s).

⑨ The host sends P1, P2, and PC to the AI CPU operator.

⑩ The AI CPU operator checks the correctness of
P1 from the NPU TS (verified in step ⑦). Using PC,
the AI CPU decrypts the binaries individually, check-
ing that they match their associated MAC. Once the bi-
naries are all decrypted, the AI CPU computes B′ ←
MACKM

(B1∥B2∥B3) and P ′
2 ← MACKD

(B′) and checks
that P ′

2 = P2. If these steps are successful, the operator
decrypts W in place on the HBM. Removing all memory
mappings in the NPU’s SMMU in step ⑥ prohibits the
host from accessing the decrypted W and B.

5.4. Firmware and Runtime Integrity

All TEE mechanisms are implemented in the NPU
firmware, which is part of GUARDAIN software TCB.
Therefore, the trustworthiness of the GUARDAIN depends
on the integrity and authenticity of the firmware. The NPU
vendor programs a cryptographic key (e-fuse) during the
manufacturing process. This cryptographic key functions as
the hardware root-of-trust and is non-extractable. It serves
as an unforgeable identity, preventing the attacker from

impersonating and emulating a legitimate NPU. Subsequent
keys for key exchanges are derived from this root key. The
control CPU initiates the NPU sub-modules during start-up
and verifies whether the firmware image (and version) is
signed with the manufacturer’s root key. This prevents the
attacker from flashing an unsigned firmware image to the
NPU. We assume the cloud service provider has a public
key infrastructure to ensure that the model and data provider
can execute an authenticated Diffie-Hellman key exchange
with the NPU to derive shared secrets. The shared secret is
then used to encrypt and authenticate the model and data,
and to verify the legitimacy of the NPU. The NPU control
CPU intercepts all the command messages coming from
the host runtime. GUARDAIN blocks all debugging com-
mands (e.g., memory inspection, profiling operators) from
the control CPU to ensure the attacker has no unmediated
communication channel with the NPU.

6. GUARDAIN

Based on the building blocks discussed in Sec. 5, we
now describe the GUARDAIN end-to-end system.
Initial setup. The NPU has an on-chip hardware security
module (HSM) that securely stores cryptographic keys and
executes operations such as key derivation functions (KDF),
shared key derivations (using Diffie-Hellman), digital signa-
ture verifications, etc. The HSM contains the NPU’s root key
in the e-Fuse, which acts as the primary root of trust. Using
a KDF, the NPU HSM derives ephemeral keys for every new
session. The model and the data provider execute an authen-
ticated Diffie-Hellman key exchange with the NPU (using
the derived ephemeral session keys) over the untrusted host
and obtain KM and KD. The NPU stores these two keys on
the HSM on-chip. During the key exchange, the NPU sends
the signed firmware version for attestation. We assume the
data provider interacts with the remote LLM application
(e.g., chatbot) through a browser loaded with KD. The
browser tokenizes the data provider’s input (D), encrypts
it (D ← EncKD

(D)), and sends the encrypted tokens to
the cloud provider. Similarly, the model provider encrypts
the model binaries and parameters: M ← EncKM

(M), and
generates the signed sequence of operator binaries for the
model and task attestation (Sec. 5.3).

Figure 7. End-to-end GUARDAIN system with internal confidential computing components and the corresponding PyTorch interfaces.

TABLE 3. SECURITY CHALLENGES AND CORRESPONDING GUARDAIN
MECHANISMS TO ADDRESS THEM.

Security challenges (Sec. 4) GUARDAIN mechanisms (Sec. 5)

Data + model confidentiality (SC 1) AI-CPU crypto operator (Sec. 5.1)
Memory Isolation (SC 2 and 3) Memory locking (Sec. 5.2)
Host interrupt (SC 2) Atomic execution (Sec. 5.2)
Model + task integrity(SC 4) Task and model attestation (Sec. 5.3)
Firmware integrity + debug (SC 5 and 6) Measured boot + disable debug (Sec. 5.4)

GUARDAIN: End-to-end system. Table 3 summarizes se-
curity challenges and corresponding mitigation techniques
discussed in Sec. 5. We build the GUARDAIN end-to-
end system upon these building blocks. Fig. 7 shows the
end-to-end GUARDAIN system along with its mechanisms
(step 1 to step 10) and their execution locations. The
security-sensitive steps that GUARDAIN adds to the NPU
firmware to enable confidential computing are highlighted
(). A description of these steps is as follows: 1 the host
calls loadModel to send the encrypted model M to the
NPU. 2 Then memcpy transfers the encrypted data D. The
host instructs the NPU to execute the AI model with the
executeModel API. However, as the model and data are
encrypted, the execution of the model is not possible with-
out first decrypting both. In GUARDAIN, executeModel
triggers the following steps to ensure the attacker-controlled
host does not manipulate the model tasks or access the
model and data after the decryption. 3 lock(M,D): The
NPU task scheduler (TS) intercepts executeModel from
the host and instructs the NPU memory manager to remove
the model, workspace, and data regions, located on the NPU
HBM, from the SMMU mappings. Therefore, the model,
data, and workspace on the NPU are no longer accessible
from the host. This mechanism is described in Sec. 5.2.
4 attestModel (M): The NPU TS verifies the tasks
and model binaries. The verification is a multi-step protocol
that involves a dedicated AI CPU operator. We describe the
model and task attestation mechanism in Sec. 5.3. 5 Once
the memory regions are locked, the TS invokes an AI CPU
operator to decrypt the model and data (refer to Sec. 5.1)
in place. 6 The AI model is executed on the AI cores
and AI CPUs based on the operators in the model layers.
The output of the model is R. The memory region(s) where
R resides are not DMA-mapped to the host. 7 The NPU
TS invokes the AI CPU cryptographic operator (Sec. 5.1)

Figure 8. GUARDAIN memory and execution lifecycle.

to encrypt the model output with the data provider’s key:
R ← EncKD

(R)) and unlocks the region. 8 The host
issues a memcpy command to copy the encrypted output R
from the NPU memory to the host memory. 9 If the host
runs another inference pass, the TS invokes another AI-CPU
operator to zero out the input data. If the host triggers the
end of the session, the TS cleans up both the model and
input data. 10 The TS invokes the NPU memory manager
to remap the memory (either D or both D and M) before
the start of the next inference pass or the end of the session.
Programming interface. GUARDAIN changes in the NPU
firmware and driver are transparent to the higher-level
software stack (e.g., PyTorch). Therefore, from the AI
developer’s perspective, the existing inference or training
workflow remains unchanged. There are minimal changes
within the Ascend PyTorch adapter to support the model
attestations. Fig. 7 shows the matrix multiplication example
(from Fig. 2) with the GUARDAIN mechanisms.
GUARDAIN lifecycle. Fig. 8 shows GUARDAIN’s memory
lifecycle over subsequent inference rounds. Typically, the
model is loaded once, followed by multiple inference and
training rounds (e.g., queries to an LLM chatbot). There-
fore, the memory associated with the model (parameters,
binaries, and model operator workspace) must be locked
and decrypted only once and remain locked until the model
is unloaded or the NPU is reset. On the other hand, the
input data arrives in a streaming fashion and needs to be
locked, decrypted, and fed to the model in each round. Once
the NPU generates the output, it encrypts it with the data
owner’s key and unlocks the corresponding memory region

Figure 9. GUARDAIN merges three subgraphs, forward, backward, and
update, to a single graph by statically comping all the layer operators.

for the DMA transfer. At the same time, the NPU resets the
input region (by overwriting it to zero) and unlocks it so the
host can transfer the next batch of encrypted data.
Scale-out Inference. We describe GUARDAIN mechanisms
for a single NPU inference. However, scaling GUARDAIN
to multiple NPUs is feasible. In data-parallel, GUARDAIN
runs independently on different NPUs, ingesting data in
parallel. For parallel pipeline inference, we need to encrypt
the output of one layer with an AI CPU encryption operator
and decrypt it on the next NPU. For tensor-parallel, the
outcome of all NPUs must be encrypted before broadcasting
and decrypted before all-reduce.
GUARDAIN adaptation for training. We previously de-
scribed how GUARDAIN protects the model and data during
inference. These basic building blocks remain the same
for model training. Training has additional steps compared
to inference. Fig. 9 shows an example training pass on
an AI model with n layers. At the start of the training,
the AI model had uninitialized parameters. The training
principle involves adjusting these parameters to minimize
classification error during inference, which unfolds in three
distinct phases. The forward pass is a standard inference
pass that evaluates the current classification error of the
model. The backward pass evaluates the parameters’ gradi-
ent to reduce the classification error. Finally, the update pass
updates the parameters based on the gradients calculated
in the backward pass. Therefore, unlike inference where
GUARDAIN verifies (refer to Sec. 5.3) one graph, during
training GUARDAIN verifies the task integrity of three sub-
graphs (forward, backward, and update). The model provider
statically compiles the AI model graph ahead of time using
the torch-dag and torch.compile API that generates
a compiled directed acyclic graph (DAG) combining all
three sub-graphs as shown on Fig. 9.
Generalization to other AI Accelerators. Many of the
GUARDAIN’s design principles apply to other existing AI
accelerators. GUARDAIN leverages the heterogeneous archi-
tecture of Ascend NPUs to offload cryptographic operators
to CPU cores and execute them as part of the AI mod-
els’ computation graph. Commercial AI accelerators such
as Nvidia Grace-Hopper [34], Apple neural engine [49],
or AMD Accelerated Processing Units [50] use a tightly-
coupled CPU-accelerator heterogeneous design where de-
coupling cryptographic operators from the AI computation

is possible. The computation graph created in PyTorch [51]
ahead of time enables inserting the security-critical op-
erators required by GUARDAIN design into existing AI
models. Similarly, the task attestation mechanism applies
to most existing accelerators [35], [52], [53] as they use
a task/command-based architecture. Other FPGA-based AI
frameworks [54], [55], [56], [57] could use GUARDAIN
design principles due to their similar software stack; how-
ever, this claim would necessitate further investigation to be
validated.
GUARDAIN limitations. GUARDAIN does not allow multi-
tenants, i.e., multiple models or single model-multiple infer-
ence users on the same NPU. Multi-tenant support could
help run multiple small LLMs (0.5-3B parameter size).
However, allowing multiple inference users on the same
model is not secure, as a malicious model provider can col-
lude with a malicious inference user and copy another user’s
data to the malicious user’s output address space. Such an
attack can be mitigated by tagging the NPU memory pages
to enforce user ownership and by adding a dynamic taint-
tracking mechanism to determine data movement between
users. However, by design, the NPU runtime running on
the host CPU initiates and manages the NPU page table.
This is due to the shared virtual memory design where the
NPU memory is abstracted as a part of the host virtual
address space (c.f. Fig. 1). Therefore, supporting multi-
tenants requires moving this functionality from the host to
the NPU, as GUARDAIN assumes the host to be attacker-
controlled, which involves significant modifications of the
NPU runtime. We note that not supporting multi-tenants is
a limitation of GUARDAIN and could be addressed by a
future extension of GUARDAIN.

As discussed previously, GUARDAIN focuses on work-
loads running on a single NPU. Except for data-parallel,
we note that enabling all other scaling out mechanisms,
such as pipeline and tensor parallel in GUARDAIN, requires
implementing significant design changes and addressing
challenges. One challenge is to encrypt massive amounts 1 of
data between NPUs before the all-reduce operation merges
the computations. This requires dedicated encryption hard-
ware to support low-latency and high-bandwidth AES-GCM.
Therefore, addressing such system challenges is non-trivial
and is out of the scope of this paper. We consider the lack
of scale-out another limitation of GUARDAIN.

7. Security Analysis

In this section, we provide an informal security analysis
of GUARDAIN and show how it ensures the security of AI
models and data from an untrusted host and cloud provider.
Malicious host and cloud provider. The host runs the
operating system/hypervisor, the NPU driver, and the AI
software stack and has full access to the NPU. The host
allocates and copies the data, model, and operator binaries
to the NPU. Once the host calls the execute() API, the

1. The interconnect (HCCS) bandwidth between Ascend 910A NPUs is
480 Gbit/s [58].

NPU task scheduler unmaps the NPU memory. Therefore,
the host cannot access the encrypted model and data any-
more. The host can interrupt the NPU between the memory
locking phase and the model and data decryption phase to
disrupt the DMA region’s locking. However, before the NPU
task scheduler schedules the AI CPU operator to decrypt the
model and data, it expects a confirmation from the NPU’s
memory manager that the memory is inaccessible from the
host. Similarly, the host can interrupt the NPU between
the result encryption and the memory unlocking to prevent
the result encryption from occurring. However, the NPU
task scheduler only requests the NPU memory manager
to unlock the DMA memory after successfully executing
all the AI CPU operations, including the encryption of the
results. The task scheduler obtains this confirmation from
its completion queue (CQ), which indicates if an operator
has succeeded or failed. This atomic property prevents the
host from accessing the plaintext model and data on the
NPU memory. The host cannot issue a malicious DMA to
modify the model and data as they contain a MAC from
the model and data provider, nor can it manipulate the
tasks after a call to executeModel as the memory is
locked. The NPU control CPU disables all the debugging
and performance monitoring interfaces to prevent the host
from having additional communication channels with the
NPU. Since all data entering and leaving the NPU is en-
crypted and authenticated, a malicious cloud provider with
physical access cannot compromise the device’s security.
The host cannot manipulate the tasks to change the model
execution or leak the model and data, as our task attestation
mechanism (Sec. 5.3) prevents such attacks. A malicious
cloud provider can flash an NPU card with an older or
compromised firmware. However, as described in Sec. 5.4,
the NPU collects the firmware measurement during the
measured boot and sends the signed measurement to the
model and data provider during the key establishment. The
model and data provider detect if the NPU runs an older
or compromised firmware version. The attacker cannot boot
an emulated NPU, as it does not have the private NPU key.
Denial of service (DoS) is out of the scope of GUARDAIN.
Malicious model provider. The motive of a malicious
model provider is to steal data from the data provider. A
malicious model provider can manipulate the AI operator
code to execute unintended operations. For example, it can
copy part of the data to the model output and retrieve it
later. By encrypting the output with the data provider’s key
before remapping it, we ensure that only the data provider
can decrypt it. GUARDAIN does not prevent kernels from
overwriting the model (relevant for training). However, over-
writing models only leads to either a corrupted model or
wrong results, which is not in the interest of the model
provider. A bug in the model operator code allows an
attacker to copy a part of the model binary or parameter
to the data provider output. However, we consider such a
case out of the scope of GUARDAIN.
Malicious data provider. The memory invariants prevent
the data provider from copying the model memory after
its decryption, preventing the model from leaking. Once

the attestation is complete, the model memory is locked.
Locking the memory ensures the data provider cannot send
malicious commands to the task buffer. GUARDAIN pre-
vents the declaration of model output that overlaps with
already allocated memory. Therefore, it prevents the data
provider from leaking model parameters or operators to
the model output. A model stealing (MS) attack involves
a malicious data provider stealing the model parameters
or inferring the operator code. Another attack, known as
a membership inference attack (MIA), enables the data
provider to infer the training data by sending many queries
to the model. In GUARDAIN, MS and MIA are orthogonal
problems and are out of scope. Independent of GUARDAIN,
the model provider can deploy additional measures in the
operators to add noise to the input or reject inferences after
a given number of queries. The model provider leverages
GUARDAIN’s model and task attestation (refer to Sec. 5.3)
to ensure such security measures are in place.

8. Implementation and Evaluation

8.1. GUARDAIN Implementation

We implement GUARDAIN into the Ascend 910A
NPU’s software stack, which involves the driver, firmware,
runtime, and Ascend PyTorch adapter written in C++.
The AES-GCM-128 AI CPU operator is based on the
AArch64cryptolib [59] library that uses ARM’s hardware
cryptographic intrinsic for efficient execution. For training
and inference of LLM models, we use both the Ascend
native execution (ACL runtime) and the Huawei PyTorch
adapter. We introduce ∼2 KLoC to implement GUARDAIN
and add support to the AI stack. We use the squad v2
dataset [60] for LLM inference, cipfer10 [61] for training
image models and tiny Shakespeare [62] for training LLMs.
Model provider. We emulate the model provider by im-
plementing it as a TCP server that serves authenticated and
encrypted compiled models using a shared secret previously
negotiated with the NPU. The model provider appends the
MAC of the parameters and operator instructions after each
encrypted blob, increasing the size of each operator binary
by 16 bytes.
Host runtime. We modify the NPU runtime (CANN) [63]
to implement the model and task attestation (cf. Sec. 5.3).
During the loadModel API call, we extract the tasks and
their associated PC_START attribute, which points to the
operator binary’s memory location. The modified runtime
expects an additional signed binary sequence from the model
file, establishing the model’s ground truth. The modified
runtime communicates with the data provider over the TCP
socket to retrieve the signed PC_START sequence.
NPU Task scheduler (TS). The modified NPU TS firmware
enforces the memory invariant and the attestation. The
TS firmware records all the tasks submitted since the
completion of the last execution. Upon reception of the
executeModel command, the TS firmware computes
the signature of the PC_START sequence using KD

(cf. Sec. 8.1). It then verifies that the signature matches
the one generated by the data provider and sent with
the executeModel command. If all the steps above are
successful, the TS firmware relays the executeModel
command to the TS hardware.
AI CPU operators. We use the CANN [63] SDK’s AI-
CPU operator development environment [64] to implement
the custom AI CPU operator. The custom operators are
responsible for the AES-GCM decryption and encryption
(cf. Sec. 5.1) operations, as well as carrying out model
and task attestation (cf. Sec. 5.3). The AI CPU operators
are executed whenever they are called from the compiled
model graph. They can also be directly called in C++ or
from PyTorch. All the AI CPU operators are implemented
as internal operators, i.e., the compiled binary of the operator
remains inside the trusted NPU firmware. Therefore, a user
cannot modify the operator code.
Memory lock. We use the dma_map_page and
dma_unmap_page functions to implement the NPU mem-
ory invariants (Sec. 5.2). The host only accesses mapped
HBM regions on the device via DMA using shared virtual
memory (SVM). Removing the mapping of the correspond-
ing DMA addresses prevents unauthorized host access. To
ensure the unmapping happens before the device starts ver-
ifying the tasks, we implement a memory lock in the NPU
TS, responsible for scheduling tasks on the AI CPUs and
AI Cores. The NPU TS sends a synchronized message (im-
plemented over shared memory, non-accessible to the host)
to the memory manager driver running on the NPU control
CPU, which then uses dma_unmap_page to unmap the
entire mapped region. Once the unmapping is complete, the
NPU TS starts with the model and task attestation (Sec. 5.3).
If the unmapping fails, the device aborts the execution.
Upon encrypting the output and resetting the input, the
AES operator informs the NPU control CPU, allowing the
respective regions to be remapped.

8.2. GUARDAIN Evaluations

In the following sections, we present the evaluation
of GUARDAIN. We first discuss microbenchmarks, where
we evaluate smaller building blocks of GUARDAIN, then
we will show and discuss the end-to-end performance and
overhead of LLMs. We evaluate GUARDAIN on four differ-
ent LLMs with different parameter sizes: A small one (for
modern standards), GPT-Neo-125M, and three larger state-
of-the-art ones, Llama2 (7 and 13 B) and Llama3 (8 B).

8.2.1. Micro benchmarks. The AES-GCM AI-CPU opera-
tor decrypts and verifies the model during setup and the data
during inference, affecting both the setup and inference time.
Fig. 10 shows the parallel AES-GCM-128 performance on
all four AI-CPU cores of the Ascend 910A NPU. We ob-
serve a maximum throughput of 6.1 GB/s when the data size
matches the shared L2 cache size of 1KB (i.e., 256B for each
core). For data sizes exceeding 1K, the cores experience
cache contention and converge to single-core performance,

Figure 10. Parallelized AES-GCM-128 operator latency and throughput on
the Ascend 910A AI-CPU cores on different data chunk sizes.

Figure 11. Ascend 910A’s Map/unmap latency from host.

around 1.6 GB/s. To maximize throughput, the operator is
fed a 1KB fixed chunk size (with interleaved DMA transfer).

Fig. 11 shows the latency of the map
(dma_map_pages) and unmap (dma_unmap_pages)
calls from the NPU driver to lock or unlock DMA memory
regions for the host. In our GUARDAIN prototype, the
map and unmap calls work at 4K page granularity, which
takes 2.47 µs for both operations. Most unmap operations
are done during the model setup to remove access to the
entire DMA-mapped space. In the subsequent inference
passes, GUARDAIN only needs to unmap the input and
output regions before decryption and remap the result after
its encryption. Consequently, the number of pages that
eventually need to be mapped or unmapped is relatively
small. The mapping and remapping for Llama-2-7B (in fp16
precision) takes ∼7sec using 4K pages. However, forcing
the NPU SVM to use huge pages (1G) helps to minimize
the latency (∼15µs/1G page). Note that the encryption
and mapping/unmapping are one-time operations as the
inference serving systems typically avoid cold-start [65] to
reduce the latency of the first token generation.

8.2.2. LLM Inference and Model Setup Evaluation.
We evaluate the GUARDAIN setup and runtime overhead.
The setup incurs a one-time cost when the model is loaded
on the NPU (loadModel API) and prepared (lock 5.2,
decryption 5.1, and attestation 5.3) for execution. The run-
time overhead denotes the added latency for text generation
during inference. Users typically only perceive the runtime
overhead while interacting with LLM applications.
Setup overhead. In the following paragraph, we evaluate the
setup overhead. Typically, the setup time reflects the size of
the AI model, which is proportional to the model parameter
count. Therefore, smaller models have significantly lower
loading times than larger models, e.g., 0.25 seconds for
GPT-Neo-125M vs 26 seconds for Llama-3 8B. In GPT-
Neo, the setup time overhead is between 50-71%, as seen
in Fig. 12. We observe that the GPT-neo with a 2K sequence
length loads faster than the other sequence lengths. GPT-

Figure 12. GPT-Neo-125 Load time overhead. The solid color boxes (Load)
show loadModel execution time. The hatched boxes (setup) show the
memory lock, model attestation, and decryption time.

Figure 13. GUARDAIN load time overheads (%) in different Llama model
variants with PyTorch.

neo uses 2K as the default (maximum) sequence length.
Any other sequence length causes the loadModel to add
a padding layer to pad the input size to 2K, adding latency.
The shorter load time of 2K sequence length makes the
GUARDAIN overhead larger (71%). However, in absolute
time, the overhead is consistent across all sequence lengths
(0.17s) as the GUARDAIN overhead depends solely on the
model size. A similar trend can also be seen in the Llama2
and Llama3 variants, depicted in Fig. 13. We also observe
that Llama-3-8B-Base has the highest load time as it is
encoded with bfloat16 data type, unlike other models
that are encoded with the Ascend-native float16 data
type. Ascend 910A NPU does not have native support for
bfloat16. Hence, Pytorch converts the datatype from
bfloat16 to float16, which adds to the latency. In
summary, GUARDAIN does not modify the loadModel
latency; it only adds time for model locking, attestation,
and decryption.
Inference overhead. Fig. 14, and Fig. 15 show the runtime
overhead of GUARDAIN with GPT-Neo 125M. In GPT-
Neo, the overhead is significantly higher than Llama’s, as a
smaller model (125M vs. 7/8/13 B) has significantly lower
inference latency than a larger one (ms vs. seconds). For
short input lengths (50 and 100), we observe 16.03% and
13.74% overhead. Larger sequences (e.g., actual chat queries
with longer contexts) result in higher inference latency
(quadratic to the sequence length). However, additional la-
tency from GUARDAIN only increases linearly with the

Figure 14. Inference time overhead (% on the bars) of GPT-Neo-125M
with different input sequence sizes.

sequence size. This reduces overhead in larger sequence
sizes, e.g., 0.91% in 2K sequence length.

GUARDAIN’s overhead reduction in LLMs with a higher
parameter count is apparent in models such as Llama-2,
Llama-3, and CodeLlama, along with their variants (chat,
instruct, and Q&A). These results are depicted in Fig. 15
for different context sizes. Note that we only evaluate up
to a 2K context size for the 13B variant of Llama-2, as
larger input sequence sizes in these two models caused out-
of-memory errors. We observed a reduction of GUARDAIN
overhead with larger input sequence sizes. This is expected
as the inference latency with increasing sequence sizes is
dominated by the model computation rather than the cryp-
tographic operations. We generally observe less than 0.1%
overhead in all Llama variants across all input sequence
sizes. Note that we use a batch size of one in all of these
experiments. With larger batch sizes, the overhead increases
by a small fraction.
Effect on accuracy. As GUARDAIN does not modify the
model structure or parameters, we did not observe any loss
of accuracy compared to vanilla execution. We compare
the GUARDAIN inference output with the vanilla output
for cross-validation. We set the temperature to zero in all
inference experiments to ensure deterministic output.

8.2.3. LLM Training. We evaluate GUARDAIN’s perfor-
mance overhead in model training. Unlike the inference
evaluation, we train CNNs such as ResNet-50 and ResNet-
152, and a small-size transformer model nanoGPT (162M)
due to the immense cost of training large models such
as Llama-2 7B (184K GPU hours [66]). Fig. 16 shows
training overhead on ResNet 50 and 152 with different
batch sizes over 200 epochs on the CIFER-10 image dataset
and nanoGPT on the Tiny Shakespeare dataset. We observe
overhead of 3.39×10−4% in ResNet152 with batch size 256
and 0.16% in NanoGPT-162M with batch size 4.
Effect on training loss. During training with GUARDAIN,
we did not observe any change in the learning rate or
training loss compared to the vanilla training, as the model
structures remain unchanged.

9. Related Work

Running sensitive computation inside a CPU-TEE (e.g.,
Intel SGX) [67] undermines the advantages of AI acceler-
ators. Other approaches partially mitigate this shortcoming

Figure 15. Single inference overhead in different input sequence sizes for vanilla and GUARDAIN on Llama2 and its variants. The value on the bar
indicates the overhead of GUARDAIN over vanilla in percentage (%).

Figure 16. GUARDAIN training overhead on ResNet50, Resnet152 and
nanoGPT162M on different batch sizes.

by only running selected parts of the workload inside the
CPU-TEE while utilizing accelerators for more intensive
tasks [68], [69], [70]. These approaches, though, still have a
significant overhead and are vulnerable to privacy-stealing
attacks [71]. In parallel (and as detailed in Sec. 3), there
has been a long line of work aimed at directly extending
the CPU-TEE or C-VMs to specific accelerators [15], [17],
[22], [72], [73]. Graphcore [18] and SheF [20] move the
trust entirely from the host to the device used to run the

workload. Similarly, GuardNN [74] removes the trust from
the host by redesigning an FPGA as an entirely new secure
accelerator for ML tasks. On a larger scale, a few approaches
[42], [75] try to extend the confidential computing paradigm
to data-center architectures, allowing many devices to be
split across users. Telekine [76] enables secure communi-
cation with cloud TEE-enabled GPUs [16]. Several existing
works purely focus on improving memory isolation through
improved capabilities [77], [78], or enhancing I/O isolation
mechanisms for confidential computing [79], which often
directly benefits TEE-devices architectures.

Other commercial solutions, such as Nvidia vGPU [80]
or AMD MxGPU [81], use SR-IOV to virtualize GPUs
and share them with multiple VMs. However, unlike
GUARDAIN, such solutions require a trusted hypervisor and
have a much larger TCB.

GUARDAIN does not provide any form of multi-tenancy
(unlike Nvidia MIG [44]) as we point out in Sec. 3. Multi-
tenancy often requires complex mechanisms to isolate mem-
ory between tenants. Current LLMs are often too large to
fit multiple on a single device, which comes at the cost of
an increased end-to-end token generation latency. Moreover,
supporting multi-tenancy requires a trusted entity on the
host, often a trusted hypervisor or a confidential VM (in the
case of Nvidia MIG). GUARDAIN excludes the host CPU
from the TCB.

Accelerator-enabled secure multi-party computation us-
ing secret sharing [82], [83] or homomorphic encryption
[84], [85] incurs significant overhead in many real-world
workloads [86], making them impractical for our setting.

Besides using a TPM for remote attestation, there have
been a few examples of software-based attestation [87], [88],
mainly for IoT devices. Upcoming PCIe features enable
mechanisms to connect CPU-TEEs with DSA-TEEs. TDISP
PCIe-6 [89] enables bounce-buffer-free shared encrypted
memory between C-VM/CPU-TEEs devices. TDISP relies
on PCI-IDE (Integrity and Data Encryption) [90], which
requires a trusted motherboard/chipset/cloud provider. PCI-
IDE on PCIe-5 uses AES-GCM for authenticated encryption
of PCIe Transaction Layer Packets (TLPs) between the CPU
and devices and between devices (P2P). TDISP reduces
overhead by eliminating additional memory copy operations
but necessitates additional hardware on the host and device
sides, which GUARDAIN does not require.

The adoption of these PCIe extensions, such as TDX-
Connect for Intel TDX, SEV-TIO for AMD SEV-SNP,
Device Attach (DA) for Arm CCA, or IOPMP for RISC-
V allows these TEE-enabled devices to benefit from se-
cure direct access to the TEE memory on processors [91],
[92], [93], [94]. Lastly, Table 1 comprehensively analyzes
relevant existing works in multiple aspects compared to
GUARDAIN.

10. Conclusion

We present GUARDAIN, a confidential computing so-
lution on NPUs that secures models and data from an
untrusted host and the cloud. GUARDAIN isolates NPU
memory and enables encrypting models and data by leverag-
ing the heterogeneous architecture of NPUs. The task and
model attestation protects the integrity and confidentiality
of the model and data. GUARDAIN implementation on a
Huawei Ascend 910A NPU and evaluation of state-of-the-art
generative AI workloads shows that GUARDAIN is practical,
secure, and introduces minimal overhead.

Acknowledgment

We thank Yuan Jinfeng for helping us navigate the
Ascend driver, firmware, SVM, and documentation, and Xu
Shifeng for helping us understand the inner workings of the
Ascend NPU task scheduler.

References

[1] OpenAI, “ChatGPT-OpenAI,” [Accessed 12-06-2024].

[2] ——, “DALL-E-2 - OpenAI,” [Accessed 12-06-2024].

[3] ——, “Sora - OpenAI,” [Accessed 12-06-2024].

[4] Microsoft, “GitHub Copilot overview — code.visualstudio.com,”
[Accessed 12-06-2024].

[5] Google, “AI Infrastructure ML and DL Model Training — Google
Cloud — cloud.google.com,” [Accessed 12-06-2024].

[6] Microsoft, “Azure OpenAI Service – Advanced Language Models —
Microsoft Azure — azure.microsoft.com,” [Accessed 12-06-2024].

[7] Huawei, “Ascend AI Cloud Service — Huawei Cloud — huawe-
icloud.com,” [Accessed 12-06-2024].

[8] Alibaba, “Alibaba Cloud AI and Data Intelligence - Alibaba Cloud
— alibabacloud.com,” [Accessed 12-06-2024].

[9] C. Nast, “OpenAI’s CEO Says the Age of Giant AI Models Is Already
Over — wired.com,” [Accessed 12-06-2024].

[10] S. Ray, “Samsung Bans ChatGPT Among Employees After Sensitive
Code Leak — forbes.com,” [Accessed 12-06-2024].

[11] Intel, “Intel Software Guard Extensions.”

[12] AMD, “AMD SEV-SNP.”

[13] ARM, “Learn the Architecture: TrustZone for AArch64,” 2021.

[14] ——, “Arm Confidential Compute Architecture (ARM-CCA).”

[15] “NVIDIA Hopper Architecture In-Depth,” 2022.

[16] S. Volos, K. Vaswani, and R. Bruno, “Graviton: Trusted execution
environments on gpus,” in USENIX OSDI, 2018.

[17] I. Jang, A. Tang, T. Kim, S. Sethumadhavan, and J. Huh, “Heteroge-
neous isolated execution for commodity gpus,” in ASPLOS, 2019.

[18] K. Vaswani, S. Volos, C. Fournet, A. N. Diaz, K. Gordon, B. Vembu,
S. Webster, D. Chisnall, S. Kulkarni, G. Cunningham et al., “Con-
fidential computing within an {AI} accelerator,” in 2023 USENIX
Annual Technical Conference (USENIX ATC 23), 2023, pp. 501–518.

[19] S. Zeitouni, J. Vliegen, T. Frassetto, D. Koch, A.-R. Sadeghi, and
N. Mentens, “Trusted configuration in cloud fpgas,” in IEEE FCCM,
2021.

[20] M. Zhao, M. Gao, and C. Kozyrakis, “Shef: shielded enclaves for
cloud fpgas,” in ACM ASPLOS, 2022.

[21] H. Oh, K. Nam, S. Jeon, Y. Cho, and Y. Paek, “Meetgo: A trusted
execution environment for remote applications on fpga,” IEEE Access,
vol. 9, pp. 51 313–51 324, 2021.

[22] S. Sridhara, A. Bertschi, B. Schlüter, M. Kuhne, F. Aliberti, and
S. Shinde, “ACAI: Protecting accelerator execution with arm confi-
dential computing architecture,” in 33rd USENIX Security Symposium
(USENIX Security 24), 2024.

[23] C. Wang, F. Zhang, Y. Deng, K. Leach, J. Cao, Z. Ning, S. Yan,
and Z. He, “Cage: Complementing arm cca with gpu extensions,” in
Network and Distributed System Security (NDSS) Symposium, 2024.

[24] E. Feng, D. Feng, D. Du, Y. Xia, and H. Chen, “snpu: Trusted
execution environments on integrated npus,” in 2024 ACM/IEEE 51st
Annual International Symposium on Computer Architecture (ISCA).
IEEE, 2024.

[25] Y. Deng, C. Wang, S. Yu, S. Liu, Z. Ning, K. Leach, J. Li, S. Yan,
Z. He, J. Cao et al., “Strongbox: A gpu tee on arm endpoints,” in
Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, 2022.

[26] H. Park and F. X. Lin, “Safe and practical gpu computation in
trustzone,” in Proceedings of the Eighteenth European Conference
on Computer Systems, 2023, pp. 505–520.

[27] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Ham-
burg, “Meltdown: Reading kernel memory from user space,” in 27th
USENIX Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[28] J. Van Bulck, M. Minkin, O. Weisse, D. Genkin, B. Kasikci,
F. Piessens, M. Silberstein, T. F. Wenisch, Y. Yarom, and R. Strackx,
“Foreshadow: Extracting the keys to the intel SGX kingdom with
transient out-of-order execution,” in 27th USENIX Security Sympo-
sium (USENIX Security 18), 2018.

[29] A. Moghimi, G. Irazoqui, and T. Eisenbarth, “Cachezoom: How SGX
amplifies the power of cache attacks,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017.

[30] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and
A.-R. Sadeghi, “Software grand exposure: SGX cache attacks are
practical,” in USENIX WOOT 17, 2017.

[31] R. Paccagnella, L. Luo, and C. W. Fletcher, “Lord of the ring(s): Side
channel attacks on the CPU on-chip ring interconnect are practical,”
in USENIX Security, 2021.

[32] N. Shrivastava and S. R. Sarangi, “Securator: A fast and secure neural
processing unit,” in 2023 IEEE International Symposium on High-
Performance Computer Architecture (HPCA). IEEE, 2023.

[33] L. Guo and F. X. Lin, “Minimum viable device drivers for arm
trustzone,” in Proceedings of the Seventeenth European Conference
on Computer Systems, ser. EuroSys ’22. ACM, 2022.

[34] NVIDIA, “NVIDIA Grace Hopper Superchip — nvidia.com,” [Ac-
cessed 24-08-2024].

[35] D. Abts, G. Kimmell, A. Ling, J. Kim, M. Boyd, A. Bitar, S. Parmar,
I. Ahmed, R. DiCecco, D. Han et al., “A software-defined tensor
streaming multiprocessor for large-scale machine learning,” in Pro-
ceedings of the 49th Annual International Symposium on Computer
Architecture, 2022.

[36] “Atlas 300T Training Card - Huawei Enterprise,” [Accessed 17-06-
2024].

[37] H. Liao, J. Tu, J. Xia, H. Liu, X. Zhou, H. Yuan, and Y. Hu, “Ascend:
a scalable and unified architecture for ubiquitous deep neural network
computing: Industry track paper,” in IEEE HPCA, 2021.

[38] Huawei, “GitHub - Ascend/pytorch: Ascend PyTorch adapter
(torch npu). github.com,” [Accessed 18-06-2024].

[39] “Private Cloud Compute: A new frontier for AI privacy in the cloud,”
2024.

[40] Apple, “Operating system integrity - Apple Platform Security,” [Ac-
cessed 04-11-2024].

[41] H. Mai, J. Zhao, H. Zheng, Y. Zhao, Z. Liu, M. Gao, C. Wang, H. Cui,
X. Feng, and C. Kozyrakis, “Honeycomb: Secure and Efficient GPU
Executions via Static Validation,” in 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23), 2023.

[42] J. Zhu, R. Hou, X. Wang, W. Wang, J. Cao, B. Zhao, Z. Wang,
Y. Zhang, J. Ying, L. Zhang et al., “Enabling rack-scale confidential
computing using heterogeneous trusted execution environment,” in
IEEE S&P, 2020.

[43] Microsoft, “Azure confidential Cloud - Protect Data In Use —
Microsoft Azure.”

[44] Nvidia, “NVIDIA Multi-Instance GPU User Guide :: Nvidia Tesla
Documentation.”

[45] V. A. Korthikanti, J. Casper, S. Lym, L. McAfee, M. Andersch,
M. Shoeybi, and B. Catanzaro, “Reducing activation recomputation
in large transformer models,” Proceedings of Machine Learning and
Systems, vol. 5, pp. 341–353, 2023.

[46] Microsoft, “Microsoft Copilot in Bing — bing.com,” [Accessed 12-
06-2024].

[47] perplexity, “Perplexity,” [Accessed 12-06-2024].

[48] A. Holdings, “ARM system memory management unit architecture
specification - SMMU architecture version 2.0,” 2024.

[49] Apple, “Apple introduces M4 chip — apple.com,” 2024, [Accessed
24-08-2024].

[50] AMD, “AMD Instinct™ MI300A Accelerators,” [Accessed 20-03-
2025].

[51] PyToech, “How Computational Graphs are Constructed in PyTorch,”
[Accessed 20-03-2025].

[52] Nvidia, “Advanced API Performance: Command Buffers,” 2021, [Ac-
cessed 15-07-2024].

[53] Google, “An in-depth look at Google’s first Tensor Processing Unit
(TPU),” 2017, [Accessed 15-07-2024].

[54] F. Jentzsch, Y. Umuroglu, A. Pappalardo, M. Blott, and M. Platzner,
“Radioml meets finn: Enabling future rf applications with fpga
streaming architectures,” IEEE Micro, vol. 42, no. 6, pp. 125–133,
2022.

[55] AMD, “FINN: Dataflow compiler for QNN inference on FPGAs,”
[Accessed 20-03-2025].

[56] Intel, “OpenVINO™ toolkit: An open source AI toolkit that makes
it easier to write once, deploy anywhere.” [Accessed 20-03-2025].

[57] AMD, “AMD Vitis™ AI Software,” [Accessed 20-03-2025].

[58] Huawei, “Atlas 800 Training Server User Guide (Model 9000,Liquid
Cooling) 21,” [Accessed 12-04-2025].

[59] ARM, “AArch64cryptolib,” 2023.

[60] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know:
Unanswerable questions for squad,” CoRR, vol. abs/1806.03822,
2018. [Online]. Available: http://arxiv.org/abs/1806.03822

[61] A. Krizhevsky et al., “Learning multiple layers of features from tiny
images,” 2009.

[62] yusuketomoto, “tinyshakespeare,” [Accessed 12-11-2024].

[63] Huawei, “CANN - Ascend Community,” [Accessed 15-07-2024].

[64] ——, “Operator development,TBE&AI CPU Operator Develop-
ment,API Reference,AI CPU API,Overview,” [Accessed 15-07-2024].

[65] W. S. Yunfen Bai and J.-T. Hung, “How To Reduce Cold Start Times
For LLM Inference,” [Accessed 13-03-2025].

[66] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei,
N. Bashlykov, S. Batra, P. Bhargava, S. Bhosale et al., “Llama
2: Open foundation and fine-tuned chat models,” arXiv preprint
arXiv:2307.09288, 2023.

[67] T. Lee, Z. Lin, S. Pushp, C. Li, Y. Liu, Y. Lee, F. Xu, C. Xu, L. Zhang,
and J. Song, “Occlumency: Privacy-preserving remote deep-learning
inference using SGX,” in The 25th Annual International Conference
on Mobile Computing and Networking, 2019.

[68] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis,
A. Cavallaro, and H. Haddadi, “Darknetz: towards model privacy at
the edge using trusted execution environments,” in Proceedings of the
18th International Conference on Mobile Systems, Applications, and
Services, 2020.

[69] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private ex-
ecution of neural networks in trusted hardware,” in International
Conference on Learning Representations, 2018.

[70] H. Hashemi, Y. Wang, and M. Annavaram, “Darknight: An acceler-
ated framework for privacy and integrity preserving deep learning
using trusted hardware,” in MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture, 2021.

[71] Z. Zhang, C. Gong, Y. Cai, Y. Yuan, B. Liu, D. Li, Y. Guo, and
X. Chen, “No privacy left outside: On the (in-) security of tee-shielded
dnn partition for on-device ml,” in 2024 IEEE Symposium on Security
and Privacy (SP). IEEE, 2024, pp. 3327–3345.

[72] J. Jiang, J. Qi, T. Shen, X. Chen, , S. Zhao, S. Wang, L. Chen,
N. Zhang, X. Luo, and H. Cui, “Cronus: Fault-isolated, secure and
high-performance heterogeneous computing for trusted execution en-
vironments,” in ACM/IEEE Micro, 2022.

[73] W. Ren, W. Kozlowski, S. Koteshwara, M. Ye, H. Franke, and
D. Chen, “Accshield: a new trusted execution environment with
machine-learning accelerators,” in 2023 60th ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2023.

[74] W. Hua, M. Umar, Z. Zhang, and G. E. Suh, “Guardnn: secure acceler-
ator architecture for privacy-preserving deep learning,” in Proceedings
of the 59th ACM/IEEE Design Automation Conference, 2022.

[75] A. Dhar, S. Sridhara, S. Shinde, S. Capkun, and R. Andri, “Con-
fidential Computing with Heterogeneous Devices at Cloud-Scale,”
in Annual Computer Security Applications Conference (ACSAC).
Applied Computer Security Associates (ACSA), 2024.

[76] T. Hunt, Z. Jia, V. Miller, A. Szekely, Y. Hu, C. J. Rossbach, and
E. Witchel, “Telekine: Secure computing with cloud GPUs,” in NSDI,
2020.

[77] J. Woodruff, R. N. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. Norton, and M. Roe, “The
cheri capability model: Revisiting risc in an age of risk,” ACM
SIGARCH Computer Architecture News, 2014.

[78] J. Z. Yu, C. Watt, A. Badole, T. E. Carlson, and P. Saxena, “Capstone:
a capability-based foundation for trustless secure memory access,” in
32nd USENIX Security Symposium (USENIX Security 23), 2023, pp.
787–804.

[79] E. Feng, D. Feng, D. Du, Y. Xia, W. Zheng, S. Zhao, and H. Chen,
“siopmp: Scalable and efficient i/o protection for tees,” in Proceedings
of the 29th ACM International Conference on Architectural Support
for Programming Languages and Operating Systems, Volume 2, 2024.

[80] NVIDIA, “Unlock Next Level Performance With NVIDIA Virtual
GPUs,” [Accessed 13-03-2025].

[81] AMD, “MxGPU-Virtualization,” [Accessed 13-03-2025].

[82] S. Tan, B. Knott, Y. Tian, and D. J. Wu, “Cryptgpu: Fast privacy-
preserving machine learning on the gpu,” in 2021 IEEE Symposium
on Security and Privacy (SP). IEEE, 2021.

[83] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi, and
R. Sharma, “Cryptflow: Secure tensorflow inference,” in 2020 IEEE
Symposium on Security and Privacy (SP). IEEE, 2020.

[84] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “GAZELLE: A
low latency framework for secure neural network inference,” in 27th
USENIX security symposium (USENIX security 18), 2018.

[85] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in International conference on
machine learning. PMLR, 2016.

[86] P. Mishra, R. Lehmkuhl, A. Srinivasan, W. Zheng, and R. A. Popa,
“Delphi: A cryptographic inference system for neural networks,” in
Proceedings of the 2020 Workshop on Privacy-Preserving Machine
Learning in Practice, 2020.

[87] A. Seshadri, A. Perrig, L. Van Doorn, and P. Khosla, “Swatt:
Software-based attestation for embedded devices,” in IEEE S&P,
2004.

[88] A. Ibrahim, A.-R. Sadeghi, G. Tsudik, and S. Zeitouni, “Darpa:
Device attestation resilient to physical attacks,” in Proceedings of the
9th ACM Conference on Security & Privacy in Wireless and Mobile
Networks, 2016, pp. 171–182.

[89] PCI-SIG, “PCI Express 6.0 Specification.”

[90] ——, “Integrity and Data Encryption (IDE) ECN Deep Dive,” ac-
cessed 2023-05-04.

[91] Intel, “Intel TDX Connect Architecture Specification,” 2023.

[92] AMD, “AMD SEV-TIO: Trusted I/O for Secure Encrypted Virtual-
ization,” March 2023.

[93] A. Holdings, “Introducing Arm Confidential Compute Architecture
guide Version 3.0,” 2023.

[94] sifive, “RISC-V Security Architecture Introduction,” 2019.

Appendix A.
Meta-Review

The following meta-review was prepared by the program
committee for the 2025 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

A.1. Summary

This paper presents GUARDAIN, a confidential comput-
ing architecture for NPUs for the purpose of LLM inference.
This solution is agnostic to the host CPU TEE and allows
mutual distrust not only between the model/data provider
and CSP but also between the model and data providers
themselves. The paper demonstrates the viability of the
solution through a prototype implementation on Huawei’s
Ascend 910A NPU.

A.2. Scientic Contributions

1) Provides a valuable step forward in an established field.
2) Address a long-known issue.

A.3. Reasons for Acceptance

1) This paper provides a valuable step forward in an es-
tablished field of confidential computing for accelerator
devices. The paper enables confidential computing with
the NPU in a host-agnostic manner which reliance on a
host based TEE. Most previous work in this domain has
focused on CPU-TEEs and GPU-TEEs. Typically, most
GPUs rely on NICs for scale-up to allow computation
using very large models. Instead, using NPUs for LLM
inference with confidential computing capabilities is
certainly an interesting direction of research.

2) It also addresses a long-known issue of enabling mutual
distrust between cloud providers, model owners and
data providers when running interference workloads in
the cloud. Several previous works have considered this
problem but by enabling this trust model in a CPU
agnostic manner, this paper explores a different point
in the design space.

A.4. Noteworthy Concerns

1) GUARDAIN does not enable multi-tenancy, which is a
significant drawback for cloud settings.

2) The source code and implementation for GUARDAIN
will not be made available publicly. This might make
reproducing this solution a challenge. However, this
was considered an acceptable trade-off to allow indus-
try submissions to S&P where it is not always feasible
to make the solution available publicly.

3) This solution has been demonstrated only in the context
of relatively small LLMs (Llama-7/13B).

4) GUARDAIN includes extensive firmware changes to
enable the desired security properties in a closed-source
system. Replicating this framework on other types of
NPUs (e.g., those based on FPGAs) may entail hard-
ware changes. So, the paper would benefit from adding
a section about extensibility to other types of NPUs.

Appendix B.
Response to the Meta-Review

1) In Sec. 3 and Sec. 6, we discuss the trade-off of
single-tenant vs multi-tenant, specifically model size,
inference latency, complexity, and dependency on a
trusted execution on the CPU. Given these tradeoffs,
we explicitly design GUARDAIN to be a single-tenant
solution, and we consider not supporting multi-tenancy
as a drawback of GUARDAIN.

2) [No response.]
3) This is true that GUARDAIN is demonstrated on rela-

tively small LLMs (7/13B). However, we would like
to point out that running a larger model does not
change GUARDAIN’s design decisions and is primarily
an engineering effort. In larger models, GUARDAIN’s
runtime overhead will reduce as larger models will
spend more time in AI-related computation.

4) In sec. 6 (Generalization to other AI Accelerators),
we provide some intuition on how GUARDAIN can
be extended to other AI accelerators. However, this
may require hardware changes; therefore, a complete
evaluation of these devices is out of the scope of the
current paper.

